Pony Wall Heavy (12ga)

Partial wall framing connection to the floor

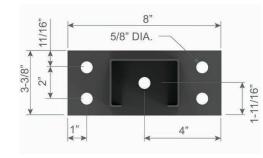
The ClarkDietrich Pony Wall Heavy is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track. Out-ofplane loads are transferred to the floor system through the base-plate, which is welded to the Pony Wall Heavy stud member.

PRODUCT DIMENSIONS

PW24 = 23-3/4" tall with 3-3/8" wide x 8" long plate PW36 = 35-3/4" tall with 3-3/8" wide x 8" long plate PW48 = 47-3/4" tall with 3-3/8" wide x 8" long plate PW60 = 59-3/4" tall with 3-3/8" wide x 8" long plate

MATERIAL SPECIFICATIONS

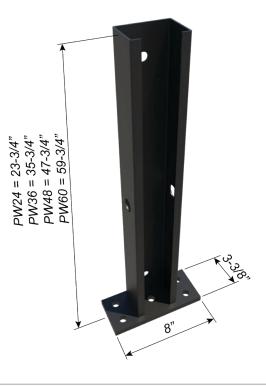
Plate Material: ASTM A36 1/2" thick hot rolled steel Stud Material: ASTM A1011 SS Grade 50, 50ksi (340 MPa) 12ga (97mils), 0.1017" Design thickness, 0.0966" Min. thickness Coating: Envirocron[®] Powder Coating Packaging: Individually ASTM: A36, A1011


Pony Wall Heavy (PW)

Product	Thi	ickness	Sing (in)	Destruction		
code	Mils (Gauge)	Design thickness (in)	Size (in)	Packaging		
PW24			23-3/4"	Individually		
PW36	07: - (12)	0.1242	35-3/4"	Individually		
PW48	97mils (12ga)	0.1242	47-3/4"	Individually		
PW60			59-3/4"	Individually		

Pony Wall Heavy (PW) Rotational Stiffness

Product code	Member length, in	No. of Anchors	Rotational Stiffness for Wind Deflection (in-Ibs/rad)*
PW	PW 24/36/48/60	1	945,000
PW	24/50/46/00	4	1,128,775


*Rotational stiffness is the max allowable moment divided by the Pony Wall Heavy (PW) rotation measured at the max allowable moment.

INSTALLATION

Install the Pony Wall inside the track or directly to the floor structure. Anchor to the floor as designed by EOR. Attach the studs to both flanges of the Pony Wall. A minimum of 3-1/2" stud member can be used.

oointload

CONCENTRATED LOAD AT FREE END

Pony Wall Heavy (PW) Allowable Loads

MATERIAL SPECIFICATION:

PONY WALL HEAVY STUD

Material Thickness: 12ga (97mils), 0.1017" design thickness Material Strength: Structural grade 50, 50ksi minimum yield strength ASTM: A1011

PONY WALL HEAVY BASE PLATE

Material Thickness: 1/2" minimum thickness Material Strength: 36ksi minimum yield strength ASTM: A36

Pony W	all Heavy	(PW) Allc	wabl	e Loa	ds		CON	CENTR	ATED	LOAD A	T FREE E
	Pony Wall	Max	point loa	ad @ can	tilever en	d, Ibs	Moment (ASD) due to point load, in-lbs					
Member designation	Length (in)	L/720*	L/360*	L/240*	L/180*	Max	L/720*	L/360*	L/240*	L/180*	Max	
	24	165	330	495	661	763	3,964	7,927	11,891	15,854	18,316	
Pony Wall	36	73	147	220	294	509	2,642	5,285	7,927	10,569	18,316	
Heavy	48	41	83	124	165	382	1,982	3,964	5,945	7,927	18,316	
	60	26	53	79	106	305	1,585	3,171	4,756	6,342	18,316	

* The values shown are based on deflection of the strut member only which has an effective moment of inertia = 0.7739 in⁴. For overall assembly deflection, designers also need to consider deflection due to rotation at the base. The values needed for this additional analysis are provided in the rotational stiffness table.

Notes:

ClarkDietrich Pony Wall Heavy is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
 Out-of-plane loads are transferred to the floor system through the base-plate, which is welded to Pony Wall Heavy member.

3 Clark Dietrich Pony Wall Heavy (PW) may be used in place of standard framing members, or in conjunction with them to frame the wall.

4 Listed allowable loads are based on Allowable Stress Design (ASD).

5 Base connection between ClarkDietrich Pony Wall Heavy and support structure are designed by others.

6 Serviceability/deflection needs to be checked separately. To do this, designers need to consider deflection of strut (effective moment of inertia = 0.7739 in⁴) and deflection due to rotation at the base (see rotational stiffness table).

7 Listed maximum point load at cantilever end calculated using maximum allowable moment. When both point load and uniform loads are applied, combined loads should be limited to maximum allowable moment.

8 It is the responsibility of the designer to properly detail connections on the contract drawings.

Pony	Wall H	leavy (PW) A	Allowa	ble L	.oads	w/A	nchoi	rs	CONC	ENTRA	TED L	DAD A	Γ FREE
	Pony Wall			Max	point loa	d @ can	ilever en	d, Ibs	A	lowable	base mor	nent, in-	lbs
Member designation	length, in	Anchors to structure	No. of Anchors	L/720*	L/360*	L/240*	L/180*	Max	L/720	L/360	L/240	L/180	Max
DW/24	24		1	142	142	142	142	142	3,403	3,403	3,403	3,403	3,403
PW24 2	24		4	165	330	452	452	452	3,964	7,927	10,840	10,840	10,840
DWO	24	1/2" \$ Hilti KB1 Expansion Anchor	1	73	95	95	95	95	2,642	3,403	3,403	3,403	3,403
PW36	36	 36 Expansion Anchor (3-5/8" Nominal Embedment, 48 3000psi Uncracked concrete) 	4	73	147	220	294	301	2,642	5,285	7,927	10,569	10,840
DW/40	10		1	41	71	71	71	71	1,982	3,403	3,403	3,403	3,403
PW48	48		4	41	83	124	165	226	1,982	3,964	5,945	7,927	10,840
PW60	(0)	concrete)	1	26	53	57	57	57	1,585	3,171	3,403	3,403	3,403
	60	60	4	26	53	79	106	181	1,585	3,171	4,756	6,342	10,840

* The values shown are based on deflection of the strut member only which has an effective moment of inertia = 0.7739 in⁴. For overall assembly deflection, designers also need to consider deflection due to rotation at the base. The values needed for this additional analysis are provided in the rotational stiffness table.

Notes:

- 1 ClarkDietrich Pony Wall Heavy is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
- **2** Out-of-plane loads are transferred to the floor system through base-plate, which is welded to Pony Wall member.
- 3 ClarkDietrich Pony Wall Heavy (PW) may be used in place of standard framing members, or in conjunction with them to frame the wall.
- 4 Listed allowable loads are based on Allowable Stress Design (ASD).
- 5 Serviceability/deflection needs to be checked separately. To do this, designers need to consider deflection of strut (effective moment of inertia = 0.7739 in⁴) and deflection due to rotation at the base (see rotational stiffness table).
- 6 Above listed capacities w/anchors shall be used only when using 1/2" φ Hilti KB1 Expansion Anchors to concrete.
- 7 Other anchors may be used to achieve full Pony Wall Heavy capacity, but must be designed separately.
- 8 Above listed capacities have not been increased for wind, seismic, or other factors.
- 9 Hilti is a registered trademark of Hilti Aktiengeseilschaft Corporation.
- 10 It is the designer's responsibility to check for minimum concrete edge distance and minimum concrete thickness when using anchors.
- 11 It is the responsibility of the designer to properly detail connections on the contract drawings.

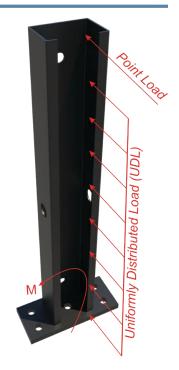
(4) Anchors to structure

Pony Wall Heavy (12ga)

Pony Wall Heavy (PW) Allowable Loads

MAXIMUM ALLOWABLE LOADS

MATERIAL SPECIFICATION:


PONY WALL HEAVY STUD

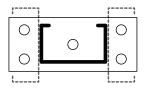
Material Thickness: 12ga (97mils), 0.1017" design thickness Material Strength: Structural grade 50, 50ksi minimum yield strength ASTM: A1011

PONY WALL HEAVY BASE PLATE

Material Thickness: 1/2" minimum thickness Material Strength: 36ksi minimum yield strength ASTM: A36

Pony W	'all Heavy (F	PW) Allowable	e Loads				
			Strer	gth based capacity (/	(ASD)		
Member designation	Pony Wall Length (in)	Anchors to structure	Allowable moment, in-lbs	Max point load @ cantilever end, lbs	Max uniform live (UDL) load, lbs/ft		
	24			763	763		
Pony Wall	36		18,316	509	339		
Pony wall	48	Designed by others	10,510	382	191		
	60			305	122		

Notes:


- 1 ClarkDietrich Pony Wall Heavy (PW) is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
- 2 Out-of-plane loads are transferred to the floor system through the base-plate, which is welded to Pony Wall Heavy member.
- 3 ClarkDietrich Pony Wall Heavy (PW) may be used in place of standard framing members, or in conjunction with them to frame the wall.
- 4 Listed allowable loads are based on Allowable Stress Design (ASD).
- 5 Base connection between ClarkDietrich Pony Wall Heavy and support structure are designed by others.
- 6 Serviceability/deflection needs to be checked separately. To do this, designers need to consider deflection of strut (effective moment of inertia = 0.7739 in') and deflection due to rotation at the base (see rotational stiffness table).
- 7 Listed maximum point load at cantilever end calculated using maximum allowable moment. Similarly, listed maximum uniformly distributed load calculated using maximum allowable moment. When both point load and uniform loads are applied, combined loads should be limited to maximum allowable moment.
- 8 It is the responsibility of the designer to properly detail connections on the contract drawings.

Pony Wall Heavy (PW) Allowable Loads w/Anchors

		Strength based	d capacity (ASD)	
Member designation	Anchors to structure	No. of Anchors to Structure	Allowable base moment, in-lbs	
PW24/PW36/PW48/P60	1/2" 🜢 Hilti KB1 Expansion Anchor	1	3,403	
PW24/PW30/PW46/P00	(3-5/8" Nominal Embedment, 3000psi Uncracked Concrete)	4	10,840	

Notes:

- 1 ClarkDietrich Pony Wall Heavy is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
- 2 Out-of-plane loads are transferred to the floor system through base-plate, which is welded to Pony Wall Heavy member.
- ClarkDietrich Pony Wall Heavy (PW) may be used in place of standard framing members, or in conjunction with them to frame the wall.
 Listed allowable loads are based on Allowable Stress Design (ASD).
- 5 Serviceability/deflection needs to be checked separately. To do this, designers need to consider deflection of strut (effective moment of inertia = 0.7739 in⁶) and deflection due to rotation at the base (see rotational stiffness table).
- 6 Above listed capacities w/anchors shall be used only when using 1/2" ϕ Hilti KB1 Expansion Anchors to concrete.
- 7 Other anchors may be used to achieve full Pony Wall Heavy capacity, but must be designed separately.
- 8 Above listed capacities have not been increased for wind, seismic, or other factors.
- 9 Hilti is a registered trademark of Hilti Aktiengeseilschaft Corporation.
- 10 It is the designer's responsibility to check for minimum concrete edge distance and minimum concrete thickness when using anchors.
- 11 It is the responsibility of the designer to properly detail connections on the contract drawings.

Uniformly distributed loads are based on framing members placed on each side of the Pony Wall

(1) Anchor to structure

(4) Anchors to structure

UNIFORMLY DISTRIBUTED LOAD

Pony Wall Heavy (PW) Allowable Loads

MATERIAL SPECIFICATION:

PONY WALL HEAVY STUD

Material Thickness: 12ga (97mils), 0.1017" design thickness Material Strength: Structural grade 50, 50ksi minimum yield strength ASTM: A1011

PONY WALL HEAVY BASE PLATE

Material Thickness: 1/2" minimum thickness Material Strength: 36ksi minimum yield strength ASTM: A36

Pony W	all Heavy (P W) .	Allov	vable	Load	ls		UNI	FORML	Y DISTI	RIBUTE	DLOAD
	-	Un	iformly o	distribute	d load, lb	os/ft	Momer	nt (ASD)	due to un	iform loa	d, in-lbs	
Member designation	Pony Wall Length (in)	L/720*	L/360*	L/240*	L/180*	Max	L/720*	L/360*	L/240*	L/180*	Max	
	24	220	440	661	763	763	5,285	10,569	15,854	18,316	18,316	
Pony Wall	36	65	130	196	261	339	3,523	7,046	10,569	14,093	18,316	
Heavy	48	28	55	83	110	191	2,642	5,285	7,927	10,569	18,316	
	60	14	28	42	56	122	2,114	4,228	6,342	8,456	18,316	

* The values shown are based on deflection of the strut member only which has an effective moment of inertia = 0.7739 in⁴. For overall assembly deflection,

designers also need to consider deflection due to rotation at the base. The values needed for this additional analysis are provided in the rotational stiffness table.

Notes:

- 1 ClarkDietrich Pony Wall Heavy is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
- 2 Out-of-plane loads are transferred to the floor system through the base-plate, which is welded to Pony Wall member.
- 3 ClarkDietrich Pony Wall Heavy (PW) may be used in place of standard framing members, or in conjunction with them to frame the wall.

4 Listed allowable loads are based on Allowable Stress Design (ASD).

- 5 Base connection between ClarkDietrich Pony Wall Heavy and support structure are designed by others.
- 6 Serviceability/deflection needs to be checked separately. To do this, designers need to consider deflection of strut (effective moment of inertia = 0.7739 in⁶) and deflection due to rotation at the base (see rotational stiffness table).
- 7 Listed maximum point load at cantilever end calculated using maximum allowable moment. When both point load and uniform loads are applied, combined loads should be limited to maximum allowable moment.
- 8 It is the responsibility of the designer to properly detail connections on the contract drawings.

Pony	Wall H	leavy (PW) A	llowa	ble L	oads	w/A	nchoi	rs	UNIFO	RMLY	DISTR	IBUTE	D LOAI
	Pony Wall			Unif	ormly di	stribute	l loads, l	bs/ft	AI	lowable l	pase mon	nent, in-	lbs
designation ler	length, in	Anchors to structure	No. of Anchors	L/720	L/360	L/240	L/180	Max	L/720	L/360	L/240	L/180	Max
DW/24	24		1	142	142	142	142	142	3,403	3,403	3,403	3,403	3,403
PW24 24	24		4	220	440	452	452	452	5,285	10,569	10,840	10,840	10,840
PW36	36	1/2" φ Hilti KB1 Expansion Anchor	1	63	63	63	63	63	3,403	3,403	3,403	3,403	3,403
PW30	30	(3-5/8" Nominal	4	65	130	196	201	201	3,523	7,046	10,569	10,840	10,840
DW40	40	Embedment,	1	28	35	35	35	35	2,642	3,403	3,403	3,403	3,403
PW48	48	3000psi Uncracked concrete)	4	28	55	83	110	113	2,642	5,285	7,927	10,569	10,840
DWCO	(0)	concretey	1	14	23	23	23	23	2,114	3,403	3,403	3,403	3,403
PW60	60		4	14	28	42	56	72	2,114	4,228	6,342	8,456	10,840

* The values shown are based on deflection of the strut member only which has an effective moment of inertia = 0.7739 in⁴. For overall assembly deflection, designers also need to consider deflection due to rotation at the base. The values needed for this additional analysis are provided in the rotational stiffness table.

Notes:

- 1 ClarkDietrich Pony Wall Heavy is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
- 2 Out-of-plane loads are transferred to the floor system through base-plate, which is welded to Pony Wall member.
- 3 ClarkDietrich Pony Wall Heavy (PW) may be used in place of standard framing members, or in conjunction with them to frame the wall
- 4 Listed allowable loads are based on Allowable Stress Design (ASD).
- 5 Serviceability/deflection needs to be checked separately. To do this, designers need to consider deflection of strut (effective moment of inertia = 0.7739 in⁴) and deflection due to rotation at the base (see rotational stiffness table).
- 6 Above listed capacities w/anchors shall be used only when using 1/2" φ Hilti KB1 Expansion Anchors to concrete.
- 7 Other anchors may be used to achieve full Pony Wall Heavy capacity, but must be designed separately.
- 8 Above listed capacities have not been increased for wind, seismic, or other factors.
- 9 Hilti is a registered trademark of Hilti Aktiengeseilschaft Corporation.
- 10 It is the designer's responsibility to check for minimum concrete edge distance and minimum concrete thickness when using anchors.
- 11 It is the responsibility of the designer to properly detail connections on the contract drawings.

Uniformly distributed loads are based on framing members placed on each side of the Pony Wall

(1) Anchor to structure

(4) Anchors to structure

Load (UDL

Iniformly Distributed